9 Jarak titik A ke titik B di peta X yang berskala 1:500.000 adalah 5 cm. Jika skala peta X diubah menjadi 1:100.000, perubahan yang terjadi adalah a. jarak titik a ke titik b menjadi 50 cm b. posisi titik a terhadap titik b berubah c. jarak titik a ke titik b menjadi 0,2 cm d. posisi koordinat titik a dan b berubah e.
Selanjutnyakita gambarkan arah perjalanan mulai dari titik x sampai ke titik y. Hasilnya seperti ini: x y z 20 20 10 10 10 20 30. Dari gambar ini bisa kita lihat bahwa perjalanan dari titik x ke titik y membentuk sisi miring dari segitiga siku-siku xyz. Jadi untuk menghitung jarak dari x ke y kita bisa menggunakan rumus Pythagoras. $$\boxed{a^2 + b^2 = c^2}$$
Diketahuikubus ABCD.EFGH dengan panjang rusuk 20 cm. Hitunglah jarak antara titik-titik berikut. a. B ke F b. A ke D c. G ke H d. A ke C e. H ke B f. G ke titik tengah AB Jawab: a. Jarak titik B ke F merupakan salah satu rusuk dari kubus ABCD.EFGH. Karena kubus memiliki panjang rusuk yang sama, jadi jarak titik B ke F adalah 20 cm. b.
Rangkumanmateri hubungan antara dua garis selanjutnya membahas tentang dua garis tegak lurus. Dua garis akan memiliki hubungan tegak lurus apabila dua garis tersebut saling berpotongan dan akan terbentuk sudut 90°. Dalam hal ini terdapat rumus garis tegak lurus yang diperoleh jika garis a mempunyai gradien m1 dan garis b mempunyai gradien m2.
1 Peserta didik dapat mendeskripsikan serta menjelaskan konsep jarak antar unsur ruang yaitu jarak antara dua titik. 2. Peserta didik dapat menentukan jarak antara dua unsur ruang yaitu jarak titik ke titik. memiliki sikap disiplin, jujur, serta terampil dan dapat menanamkan sikap tanggung jawab sosial dan bekerja sama
Keterangan θ = sudut yang dibentuk oleh dua vektor A dan B dengan 0o ≤ θ ≤ 180o. |A| = besar vektor A. |B| = besar vektor B. AB cos θ = BA cos θ maka A . B = B . A. Perkalian titik dua vektor disebut juga sebagai perkalian skalar. Untuk memudahkan perhitungan perkalian titik dua vektor, perlu dipahami sifat-sifat perkalian titik sesama
Sebuahbatu yang beratnya 500 N dipindahkan menggunakan sebuah tuas dengan gaya sebesar 200 N. Bila lengan kuasa 50 cm, hitunglah: a. jarak antara beban ke titik tumpu tuas. b. keuntungan mekanis yang diperoleh . Penyelesaian: w = 500 N. F = 200 N. L k = 50 cm . a. jarak antara beban ke titik tumpu tuas merupakan lengan beban, maka: F x L k = w
ERRPPr. Jawaban yang benar untuk pertanyaan tersebut adalah . Ingat rumus jari-jari lingkaran berikut Dan titik pusat lingkaran berikut Ingat pula bahwa jarak kedua titik pusat lingkaran sebagai berikut Diketahui asumsi kesalahan ketik pada soal. . Berdasarkan rumus dan informasi di atas, maka persoalan tersebut dapat diselesaikan sebagai berikut Jari-jari dan titik pusat lingkaran Jari-jari dan titik pusat lingkaran Kemudian, menghitung jarak antara kedua titik pusat lingkaran tersebut sebagai berikut Sehingga persoalan tersebut dapat digambarkan sebagai berikut Menghitung nilai perbandingan pada segitiga sembarang sebagai berikut Dengan perbandingan trigonometri pada segitiga siku-siku, maka nilai . Sehingga panjang dapat diperoleh sebagai berikut Dengan demikian, jarak antara kedua titik potong lingkaran tersebut adalah .
PembahasanDiketahui r 1 ​ , θ 1 ​ = 1 , 0 r 2 ​ , θ 2 ​ = 4 , 3 4 π ​ Ingat rumus jarak berikut. j = r 1 2 ​ + r 2 2 ​ − 2 r 1 ​ r 2 ​ cos θ 2 ​ − θ 1 ​ ​ Diperoleh j ​ = = = = = ​ 1 2 + 4 2 − 2 ⋅ 1 ⋅ 4 ⋅ cos 3 4 π ​ − 0 ​ 1 + 16 − 8 ⋅ cos 3 4 π ​ ​ 17 − 8 ⋅ − 2 1 ​ ​ 17 + 4 ​ 21 ​ ​ Dengan demikian, jarak dua titik tersebut adalah 21 ​ satuan .Diketahui Ingat rumus jarak berikut. Diperoleh Dengan demikian, jarak dua titik tersebut adalah .
BerandaTentukan jarak antara dua titik dari pasangan titi...PertanyaanTentukan jarak antara dua titik dari pasangan titik berikut. − 19 , − 16 , − 2 , 14 Tentukan jarak antara dua titik dari pasangan titik berikut. Jawabanjarak kedua titik tersebut adalah 34,48 kedua titik tersebut adalah 34,48 jarak kedua titik tersebut adalah 34,48 satuan. Jadi, jarak kedua titik tersebut adalah 34,48 satuan. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!549Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
MatematikaTRIGONOMETRI Kelas 10 SMATrigonometriKoordinat Polar atau KutubKoordinat Polar atau KutubTrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0221Diketahui koordinat titik A-2akar2, -2akar2. Koordi...Diketahui koordinat titik A-2akar2, -2akar2. Koordi...0210Koordinat Cartesius untuk titik 12,300 adalah...Koordinat Cartesius untuk titik 12,300 adalah...0221Koordinat polar untuk titik -akar6, akar2 adalahKoordinat polar untuk titik -akar6, akar2 adalah0248Segitiga KLM memiliki koordinat K-5,-2, L3,-2, dan M...Segitiga KLM memiliki koordinat K-5,-2, L3,-2, dan M...
Aljabar Contoh Soal-soal Populer Aljabar Tentukan Jarak Antara Dua Titik -2,4 and 4,-6 dan Step 1Gunakan rumus jarak untuk menentukan jarak antara dua titik 2Substitusikan nilai-nilai aktual dari titik-titik ke dalam rumus untuk lebih banyak langkah...Kalikan dengan .Tambahkan dan .Naikkan menjadi pangkat .Kurangi dengan .Naikkan menjadi pangkat .Tambahkan dan .Tulis kembali sebagai .Ketuk untuk lebih banyak langkah...Faktorkan dari .Tulis kembali sebagai .Mengeluarkan suku-suku dari bawah 4Hasilnya dapat ditampilkan dalam beberapa EksakBentuk DesimalStep 5
hitunglah jarak antara dua titik berikut